ADVANCED METAL CASTING (HONORS in MECHANICAL ENGINEERING)

III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Describe the primary requirements of a	L2	CO1	7 M			
		moulding sand. How is each provided by the						
		sand and additive aggregate?						
	b)	Discuss with a neat sketch of a typical	L2	CO1	7 M			
		mould and name its principle parts.						
	OR							
2	a)	With neat sketches describe the basic steps	L2	CO1	7 M			
		in Casting Process.						
	b)	Discuss the casting defects and the remedies	L2	CO1	7 M			
		that may be used to remove the defects from						
		the casting products/materials.						
UNIT-II								
3	a)	Discuss different types of Patterns. Briefly	L3	CO2	6 M			
		discuss about the pattern allowances.						
	b)	Show how to combine the following pairs of	L3	CO2	8 M			
Page 1 of 4								

Max. Marks: 70

		allowances:			
		(i) distortion and machining,			
		(ii) draft and machining.			
	1	OR		J 1	
4	a)	Illustrate the design considerations leading	L3	CO2	7 M
		to better venting of gases generated by			
		burning of core binder during casting.			
	b)	Write a short notes on :	L3	CO2	7 M
		i) Loose pieces			
		ii) stop offs			
		iii) Rapping and lifting operations			
		iv) Colour coding of patterns			
		UNIT-III			
5	a)	Describe the solidification of a pure metal	L3	CO3	7 M
		with a neat sketch.			
	b)	Illustrate directional solidification of	L3	CO3	7 M
		casting. How can one achieve it?			
	I	OR			
6	a)	Design a top feeder for the last freezing	L3	CO3	8 M
		region based on modulus principle. Assume			
		feeder height to diameter ratio is 1.5 and the			
		neck length is 10 mm. Assume no heat			
		transfer from the entire bottom face of			
		feeder. Recalculate the modulus of the last			
		freezing region and correct the feeder			
		dimensions through a second iteration.			

	b)	Explain the formation of casting from liquid	L3	CO3	6 M			
	0)	metal poured in to the mold. What are the	20	005	0 101			
		conditions that favor the formation of						
		equiaxed grains?						
		equiaxea granis.						
	UNIT-IV							
7	a)	How do you perform gating design? Explain	L3	CO3	6 M			
		Gating ratio.						
	b)	Calculate :	L3	CO3	8 M			
		i) Runner dimensions assuming height to						
		width ratio is 1.5.						
		ii) Ingate dimensions assuming height to						
		width ratio as 0.5.Assume both have						
		rectangular cross section.						
		OR						
8	a)	What is the purpose of runner expansion	L3	CO3	7 M			
		and what is its ideal shape.						
	b)	How is the volumetric contraction of a	L3	CO3	7 M			
		casting alloy compensated between these						
		pairs of temperatures						
		(i) pouring and liquidus,						
		(ii) liquidus and solidus, and						
		(iii) solidus and ambient.						
				. L				
		UNIT-V						
9	a)	Discuss in detail the following:	L2	CO4	7 M			
		i) Tooling cost estimation						

	b)	List the key parameters for evolving the	L2	CO4	7 M			
		parametric equation for estimating the cost						
		of pressure die casting dies.						
	OR							
10	a)	Estimate the different measures of shape	L3	CO4	8 M			
		complexity (volume ratio, surface area ratio,						
		and number of cored features) of a cube						
		with side 90 mm having a circular through						
		hole of diameter 15mm.						
	b)	Discuss the main considerations in selecting	L2	CO4	6 M			
		a suitable casting process for a given						
		product.						